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An Improved Extended-Corresponding-States 
Theory for Natural Gas Mixtures I 

!. M.  Marrucho,  -~ A. M. F. Palavra,  -~ and J. F. Ely 3"4 

In this work the van der Waals one-fluid extended-corresponding-states theory 
mixing rules arc modified so that the composition dependence of the second 
virial coefficient is theoretically correct, regardless of the mixing rules used to 
describe the remainder of the pl 'T surface. This modification leads to a sub- 
stantial improvement in the prediction of the mixture phase equilibrium. Results 
and comparisons with the unmodified extended-corresponding-states theory and 
experimental data are presented. 

KEY WORDS: corresponding states: mixing rules; natural gases; second virial 
coefficients. 

I, I N T R O D U C T I O N  

The reliable mode l ing  of mixture  the rmophys ica l  p roper ty  behav ior  includes 
an accura te  descr ip t ion  of both  bulk and phase equi l ibr ium propert ies .  
Ideally,  both  these needs should  be met by a single model.  To this date,  
however,  no single mixture  model  has been p roposed  which can represent  
both these types of proper t ies  with high accuracy.  Thus,  it is c o m m o n  to 
use one model  for bu lk -phase  proper t ies  (e.g., the extended co r re spond ing  
states or  A G A - 8  for na tura l  gases) and a different model  to define phase 
boundar ies  (e.g., the P e n g - R o b i n s o n  model  for hydroca rbons ) .  

In this work  we reformula te  the van der  Waa l s  one-fluid extended-  
cor responding-s ta tes  theory mixing rules so that  a single model  can be used 
to descr ibe  na tura l  gas mixtures.  Extended co r r e spond ing  states for 
mixtures was or iginal ly  p roposed  by Leland and co-workers  [ 1, 2]  and  has 
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been modified to include exact shape factors by Ely et al. [3].  This model 
has been used successfully to calculate bulk properties of an extensive range 
of mixtures, including natural gases, but the incorrect compositional 
mapping on the vapor sidc leads to a less than satisfactory description of 
the phase equilibrium in these systerns. This behavior is traceable to the 
composition dependence of the second virial coefficient which is generated 
in the van der Waals one-fluid theory. 

In this work, new mixing rules are introduced so that the statistical 
mechanical second-virial-coefficient composition dependence is recovered. 
The results for phase equilibrium properties are compared with the one- 
fluid van der Waals theory and experimental results for mixtures of natural 
gases. 

2. E X T E N D E D  C O R R E S P O N D I N G  STATES 

The extended-corresponding-states theory (ECSTI is one of the most 
successful models in predicting saturated liquid densities of natural gas [4-] 
and e thane+propane  mixtures [5],  even relatively close to the mixture 
critical point. The accuracy of this approach lies in the accuracy of the 
empirical reference-fluid equation of state and the accuracy of the shape 
factors which are used to define the equivalent state point of the reference 
fluid. The two basic equations that conformal substances must obey in this 
theory are 

.4',:(p. f , I  .4[,(p,,. T.) 

R T  i RT. (1) 

Z~(l,,, 7",)= Z[,{l,,., T.) 

In these equations ,4 r is the residual Helmholtz energy, Z r the residual 
compressibility factor, p the molar density, T tile absolute temperature, and 
tile subscripts "[/" and "'0'" indicate the target fluid of interest (pure or 
mixture) and the reference fluid, respectively. The mapping of these ther- 
modynamic functions between the two fluids is achieved by the definition 
of equivalent-substances reducing ratios, .[i and h, : 

T,, = T,/I; (2) 

p .  =/ l~p I 

and 

.If(P,, T,) = (T,~/T.~) 0~.(p,, T,) 
(3) 
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where the superscript "c" denotes the critical property and 0 and ~b the 
shape factors. The shape factors are functions of the density and tem- 
perature and can be seen as slowly distorting scales that force the two 
fluids to conformality. They are calculated by simultaneously solving the 
system of Eqs. ( 1 ). 

The extension of this model to mixtures is usually done by using the 
conventional van der Waals one-fluid (VDW-II mixing rule approach: 

and 

. /7~(p~., T , . ,  f " i . ~ ,.x,,-)= h,.(p,. T,, l-x,, ) ' ~ ~ .\,.vJL:,(t',, T,)l;,(p,, T,.) 
i i 

Is,(l',., T, ,  ' "' "Xi J" ) = ~ Z " \ ' , ' V J l i i ( P  , T, ) 
i * 

(4) 

.1),= (1).1))'2(1 - k , )  
(5) 

h o=~(hl  3 + h i  3 ) ( I - - / , , )  

Tile subscript ".v" denotes a mixture property. .x,  designates the mole 
fraction of component i in the mixture, and /,-~, and /,, the interaction 
parameters that are usually considered constants for the system of interest. 
The.l~ and hi are defined in Eq. 121. In this way. the properties of a mixture 
can be calculated from the knowledge of pure component and reference 
fluid properties at the equivalent state point. 

3. P H A S E  E Q U I L I B R I U M  

The phase equilibrium in mixtures is described by the equilibrium 
K-values which are defined by the ratio of the fugacity coefficients of 
component i in the liquid phase, ~]. and vapor phase. ¢~" 

K, = ~b,/,ki (6) 

The q~,'s are evaluated in terms of the thermodynamic properties of the 
reference fluid according to the following equations: 

In ~bi = In ~b,, + -[,H.,, + u,~F,. 

r _r In In 4,o= a . + - . -  --. 
(7) 

where ~i and ~, are the fugacity coefficients of component i and the 
reference fluid, and a[. z[. and u[, are the dimensionless residual Helmholtz 
energy (A r/RT), the residual compressibility factor t Z -  1), and dimensionless 
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residual internal energy of the reference fluid (LIr/RT). respectively. The 
quantities H,,i and F,, are tile dimensionless composition derivatives 
defined as 

H,,i = h, \ ? n , ) 7 , . ,  .......... 
(81 

In this work a 32-term modified Benedict-Webb Rubbin (MBWR-32) 
equation of state for propane was chosen to represent the reference fluid. 
Since the shape factors perform an exact mapping between pure fluids. 
the choice of the reference fluid is not important provided that the fluid 
chosen spans an appropriate range of reduced temperatures and pressures. 
The higher-order temperature and density dependence of the reference fluid 
equation of state provides a nearly exact description of the bulk-phase 
properties. Unfortunately. the fact that the van der Waals one-fluid 
extended-corresponding-states theory only scales correctly terms up to I / T  
[6]  makes this approach incorrect. Until now. most attempted improve- 
ments to the VDW-1 model have been focused on improving mixing rules 
for the liquid side. 

To describe the behavior of gases accurately, the truncated version of 
the virial expansion is usually used. The reason for this choice is that it has 
a firm statistical mechanical basis and the virial coefficients of a multicom- 
ponent mixture can be obtained from the component virial coefficients by 
formally rigorous mixing rules. The virial equation of state truncated after 
the first order in density has the form 

Z ..... = I + B  ..... (TIp,,,,~ (9) 

where Z,,,,~ and B,,,,~(T) are the mixture density and second virial coef- 
ficient, respectively. The mixture second virial coefficient can be calculated 
from the second virial of the reference fluid as 

. . . . . .  ' ?',~ ) ---- 2 ~ vivihiiB(, (]0) 
t ] 

where/i, is independent of composition. In the MBWR-32 equation of state 
the second virial B,, is given as a cubic function of the inverse temperature: 

Bo = Ni + N,_/T 1 "- + N3/T  + N.dT'- + N s / T  ~ (11 ) 

Although the second virial for the reference fluid incorporates only 5 of the 
32 terms in the equation of state, it is responsible for almost 90% of the 
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Fig. I. Contribution of the second virial coefficient to the compressi- 
bility factor. 

thermodynamic properties of the vapor mixtures [7]  as illustrated in Figs. 
I and 2. Thus, errors in the VDW-1 representation of the second virial 
coefficient will be reflected as an erroneous description of the vapor-phase 
fugacity coefficient, Eq. (7). 

The mixture second virial from the ECST is calculated by means of 

J 

(12) 

where f ,  is defined in Eq.(4). Comparing Eqs. (10) and (12) i t  can be 
concluded that this last expression is valid only if for all pairs f ,  =./)j. It is 
obvious that this is valid only for i = j or if the second virial coefficient has 
a linear temperature dependence. This is not the case when the MBWR-32 
is used to describe the properties of the reference fluid. Also note that the 
second virial coefficient from ECST does not have the quadratic composi- 
tion dependence required by theory, since f,. introduces an additiomtl 
composition dependence. Figure 3 illustrates this "'artificial" composition 
dependence in the cross-virial coefficient obtained from the corresponding- 
states calculations. 
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Composit ion dependence of the ECST cross second virial coef- 
ficient for the mixture m e t h a n e + e t h a n e  at 293.15 K. 
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In an effort to fix this deficiency, we have explored a new set of mixing 
rules based on the ideas of Wong-Sandler  [8].  In particular, we have 
modified the volume mixing rule to be correct in the second virial limit: 

. r ,  h vow = Z Z ,-,.,-, /;,h, 
i j 

VDW z,. = Y'. Y'..¥,-x'flhj ( 13 ) 
i i 

V I R I A L  Bij(T) 
'.,. = ~ ~ x ,-" , Bo( T l f  ,. ) 

i i 

where B, is the second viria] coefficient of the t'j pair in the mixture. These 
mixing rules improve substantially the description of phase equilibrium 
properties, like K values, even for mixtures which exhibit relatively small 
size differences. 

4. RESULTS 

This modified ECST approach was used to calculate the equilibrium 
K values of the systems methane + ethane, methane + propane, methane + 
n-butane, and methane + n-pentane since these are the main components of 
most of the natural gas mixtures. In evaluating the pure B,  in Eq. (13), the 
pure fluid MBWR-32 equations contained in the D D M I X  program were 
used. The unlike cross virial B,  were obtained from Ref. 9. 

Figure 4 illustrates the results obtained for the methane K value in the 
systems mentioned above. As shown in this figure the new method con- 
sistently improves the description of the K values, except in the methane + 
n-butane. In this case we note that the modified ECST model is in perfect 
agreement with Peng-Robinson model, thus casting some doubts on the 
experimental data. An unwanted side effect of these mixing rules is a loss 
of accuracy in the ECST prediction of the liquid-phase properties. A possible 
way of recovering liquid phase one-fluid van der Waals ECST results is 
through a switching function: 

h~. = ~h vIRIAL "1- ( l  - -  ~ )  h v o w  ( 1 4 )  

where ( is a switching function that is essentially zero or one according to 
the cutoff parameter  chosen. This type of approach has been used in the 
past to switch between scaled and mean-field equations of state near the 
pure fluid critical point and in early wide-range equation-of-state develop° 
ment. It is also well-known that it will lead to a discontinuity in the derived 
properties, but since the bulk-phase properties are well represented in 
ECST this discontinuity is expected to be small. 

-,40 15 6-1X 
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Fig. 4. Percentage of error in K~ calculated from ECST and the 
model proposed in this work, for the mixtures (1 }methane+ 
(2)ethane 1data in Refs. 10 and 11), ( I )me thane+(2)p ropane  
(data in Refs. 10 and 12), ( l )methane+12)n-butane at 199.88 K 
(data in Refs. 10 and 13) and 11 )methane + (2)n-pentane {data in 
Ref. 14). (@)This  work: (C,] ECST. 

5. CONCLUSIONS 

In conclusion, we have demonstrated a weakness in the van der Waais 
one-fluid theory representation of the second viriai coefficient which 
impairs its ability to represent accurately the phase equilibrium in natural 
gases. We have presented a promising approach to solve this problem 
which incorporates the correct composition dependence of the second virial 
coefficient in the mixing rules. Preliminary tests show that this modification 
markedly improves the methane K value in binary natural gas mixtures. 
Switching functions are currently being studied to improve the liquid- 
phase-bulk properties obtained with this model. 
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